Incorporating Data from Several Remotely Sensed Platforms to Map Current and Potentially Restorable Wetlands

> Jennifer M. Corcoran, M.S. Dr. Joseph F. Knight

Remote Sensing & Geospatial Analysis Laboratory

Outline

- Background, Motivation, & Previous Work
- Study Site, Data & Methodology
- Results & Conclusions
- Ongoing & Future work

Background & Motivation

- Why should we care about wetlands?
 Water quality, wildlife habitat, runoff, flooding…
- "Can't manage what you don't measure"
- Radar not affected by clouds or night
- Other data representative of structure and potential of H₂O presence
- Statewide assessment and monitoring requires affordable products

Previous Work

Can. J. Remote Sensing, Vol. 37, No. 5, pp. 1-19, 2011

- Previous work:
 - Aerial photos, Radarsat-2, & topo data at higher resolution

The integration of optical, topographic, and radar data for wetland mapping in northern Minnesota

Jennifer Corcoran, Joseph Knight, Brian Brisco, Shannon Kaya, Andrew Cull, and Kevin Murnaghan

Abstract. Accurate and current wetland maps are critical tools for water resources management, however, many existing wetland maps were created by manual interpretation of one aerial image for each area of interest. As such, these maps do not inherently contain information about the intra- and interannual hydrologic cycles of wetlands, which is important for effective wetland mapping. In this paper, several sources of remotely sensed data will be integrated and evaluated for their suitability to map wetlands in a forested region of northern Minnesota. These data include aerial photographic from tool different times of a growing season, National Elevation Dataset and topographical different times of a straight season, National Elevation Dataset and topographical different times of a weight season important to automate the season of the season of

- Best datasets included summer blue band, spring red & NIR bands, and elevation
- Comparatively lower overall accuracy
 - = 72% Optical, Topo only
 - = 75% Optical, Topo, and Radarsat-2

Study Site

Classification - Water

UNIVERSITY OF MINNESOTA Driven to Discoversm

Classification – Emergent

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Classification - Forested

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Classification - Scrub/Shrub

UNIVERSITY OF MINNESOTA Driven to Discoversm

Objectives

- Medium resolution classification of wetland from upland & probability
- Identify key inputs for best accuracy
 - Using all available data, all season
 - Evaluate "Spring", "Summer", and "Fall" datasets
- Evaluate decision tree classification

Data Used

- Ground reference data:
 - Collected on the ground in 2009 & 2010
- Supplementary dataset from MN DNR – Wetland Status & Trends Monitoring
- 75% for training the classifier, 25% for independent accuracy assessment

- Optical and Infrared
 - Landsat TM imagery from several dates
 - "Spring" April 17, 2010; May 19, 2010; NDVI, TC
 - "Fall" Sept 21, 2009; Oct 4, 2010; NDVI, TC
 - Color Infra-red (CIR) Aerial Orthophotos
 - "Spring" 2009 (4 bands), NDVI
 - "Summer" 2008 (4 bands), NDVI
 - "Summer" 2010 (3 bands)

- USGS National Elevation Dataset
 - Elevation; Aspect; Slope; Curvature; Flow accumulation
- Soils (USDA SSURGO)
 - Drainage class: dominant and wettest;
 Hydric soils; & Soil type

- RSAT-2 (HH, HV, VH, VV) C-band
 - Two dates in 2009: June 15 & Sept 19
 - Ratio HH/HV
- PALSAR (HH, HV) L-band
 - Two dates in 2009: June 29 & Sept 11,
 One date in 2010: June 14
- Both sets of data scaled in decibels

- Polarimetric decompositions for June 15, July 9, Aug 26, & Sept 19, 09 (July & Aug provided by Canada Centre of Remote Sensing)
 – Van Zyl, Freeman-Durden, Cloude-Pottier
- Decomps consider scatter mechanisms, i.e. single (odd), double (even), or volume (diffuse) & randomness of scattering (ex. entropy, anisotropy)

DEM
Aspect
Curvature
Flow Accumulation
Slope
Soil drainage, dominant
Soil drainage, wettest
Hydric
Soil Type

Spring	Summer	Fall
Aerial photo 2009	Aerial photo 2008	
	Aerial photo 2010	
TM April 17, 2010		TM Sep 29 <i>,</i> 2009
TM May 19, 2010		TM Oct 2, 2008
Rsat-2 June 15, 2009	Rsat-2 July 9, 2009	Rsat-2 Sept 19, 2009
	Rsat-2 Aug 26 2009	
Palsar June 14, 2010	Palsar June 29, 2009	Palsar Sept 11, 2009

Methodology Used

- Decision tree classification
 - Rule-based technique using training data
 - Designed to reduce class variability
 - Rules applied to a set of data to classify
 - Handles continuous and discrete data

Methodology Used, cont

Methodology Used, cont

- randomForest = 'forest' of trees
- Each tree results in a class or 'vote', final classification is the most votes
- Out of bag (OOB) sampling allows for cross validation and calculating probability

Methodology Used, cont

- Outputs evaluated from randomForest
 - Mean Decrease Accuracy: the relative impact of including variable on accuracy
 - Gini Index: every time a split is made, the Gini Index value is less than the 'parent node' – sum indicates relative importance
 - Classification and Probability maps

Data Used, review

Total = 118 input rasters, 60 combos

- Aerial Orthophotos
- Landsat TM & Derivatives
- NED & Derivatives
- RADARSAT-2 Quad-pol
- Polarimetric Decompositions
- PALSAR Dual-pol
- SSURGO Soils & Attributes

Results: Outline

- Full Season Upland/Wetland Classification
- Probability maps
- Key input data layers/variables
- Data reduction classification
- Accuracy Assessment
- Data available in different seasons

- a. TM, topo, palsar, soils (#1)
- b. TM, topo, Rsat, soils (#2)
- c. TM, topo, soils (#3)
- d. National Wetland Inventory

Most Important Variables for Upland/Wetland Classification

Spring	Summer	Fall
Aerial photo 2009	Aerial photo 2008	
	Aerial photo 2010	
TM April 17, 2010		TM Sep 29, 2009
TM May 19, 2010		TM Oct 2, 2008
Rsat-2 June 15, 2009	Rsat-2 July 9, 2009	Rsat-2 Sept 19, 2009
	Rsat-2 Aug 26 2009	
Palsar June 14, 2010	Palsar June 29, 2009	Palsar Sept 11, 2009

Total Accuracy (%)	Kappa-hat Statistic	Z Statistic
79	0.65	16.02
77	0.64	16.01
78	0.62	15.10
77	0.61	14.44
70	0.46	9.64
	Total Accuracy (%) 79 77 78 77 78 77 70	Total Accuracy (%) Kappa-hat Statistic 79 0.65 77 0.64 78 0.62 77 0.61 70 0.46

Results: Seasons, cont

- a. Full Season
- b. Spring
- c. Summer
- d. Fall

Results: Seasons, cont

- a. Full Season
- b. Spring
- c. Summer
- d. Fall

Results: Season - Spring

Spring

- Elevation
- Curvature
- TM May Thermal
- TM May NDVI
- TM April NDVI
- Rsat HH June 15

DEM
Aspect
Curvature
Flow Accumulation
Slope
Soil drainage, dominant
Soil drainage, wettest
Hydric
Soil Type

Spring	Summer	Fall
Aerial photo 2009	Aerial photo 2008	
	Aerial photo 2010	

TM April 17, 2010		TM Sep 29, 2009
1 101 101dy 19, 2010		TWI OCt 2, 2008
Reat 2 June 15, 2009	Prot 2 July 0 2000	Post 2 Sont 10, 2000

	Rsat-2 Aug 26 2009	
Deleast lune 14, 2010	Deless Ives 20, 2000	Delease Const 11, 2000

Results: Season - Summer

Summer

- Aerial 2010 Green
- Soils, Hydric
- Curvature
- Soils, Drainage Wettest
- Aerial 2010 Red
- Palsar HV July

DEM
Aspect
Curvature
Flow Accumulation
Slope
Soil drainage, dominant
Soil drainage, wettest
Hydric
Soil Type

Spring	Summer	Fall
	Aerial photo 2008	
	Aerial photo 2010	
		TM Sep 29, 2009
		TM Oct 2 2008

Rsat-2 June 15, 2009	Rsat-2 July 9, 2009 Rsat-2 Aug 26 2009	Rsat-2 Sept 19, 2009

Palsar June 14, 2010	Palsar June 29, 2009	Palsar Sept 11, 2009
		-

Results: Season - Fall

Fall

- TM Oct Thermal
- Curvature
- TM Sep Mid-Infrared
- TM Sep Far-Infrared
- Rsat HV Sep 19
- TM Oct Red

DEM	
Aspect	
Curvature	
Flow Accumulation	on
Slope	
Soil drainage, domi	nant
Soil drainage, wett	est
Hydric	
Soil Type	

Spring	Summer	Fall	
Aerial photo 2009	Aerial photo 2008		
	Aerial photo 2010		
TM April 17, 2010		TM Sep 29, 2009	
TM May 19, 2010		TM Oct 2, 2008	
Rsat-2 June 15, 2009	Rsat-2 July 9, 2009	Rsat-2 Sept 19, 2009	
	Rsat-2 Aug 26 2009		
Palsar June 14, 2010	Palsar June 29, 2009	Palsar Sept 11, 2009	

Results: Seasons, cont

Upland, Water, Wetland Classification	Total Accuracy (%)	Kappa-hat Statistic	Z Statistic
Spring: TM, Topo, Rsat	79	0.62	15.10
Summer: AP, Topo, Palsar , Soils	77	0.58	13.59
Fall: TM, Topo	77	0.60	14.04
Full Season: TM, Topo, Palsar, Soils	79	0.65	16.02

Results: Seasons, cont

UNIVERSITY OF MINNESOTA Driven to Discoversm

Conclusions, cont

- With the moderate resolution data in this study site:
 - It is more accurate to classify wetland from upland by integrating Landsat TM, Palsar, topo, and soils data from different dates throughout the year
 - Classifying wetlands during different seasons is more feasible with aerial photos, Radarsat-2, and Palsar included
 - Data reduction does not sacrifice much in accuracy
 - Statewide wetland classification is achievable with relative efficiency and affordability

Conclusions, cont

- The key input layers for decision tree classification of annual wetlands and wetlands during different seasons:
 - "Annual Snapshot"
 - Elevation, curvature, aspect
 - Fall & Spring TM TC, thermal, Mid-IR
 - Hydric Soils & Drainage, wettest time

Spring

- Elevation, Curvature
- TM NDVI, Thermal

Summer

- Aerial Green Band
- Soils, Hydric
- Soil Drainage, Wettest time *Fall*
- TM Mid-IR, Thermal
- Curvature

Ongoing & Future Work

- LiDAR intensity and vegetation structure
- Spatially explicit decision trees
- Integrate with object oriented analysis
- Additional study areas: Minnesota River
- Other parameters for restoration ID
- Applications for emergency response (flood water retention)

Project funded & supported by:

US Fish & Wildlife Service MN Department of Natural Resources Legislative Citizen Commission on Minnesota Resources Environment & Natural Resources Trust Fund Canadian Center for Remote Sensing Canadian Space Agency SOAR Program US Forest Service - Forest Remote Sensing Applications Center American Society for Photogrammetry and Remote Sensing

Thank you for your attention!

Any questions?

murph636@umn.edu

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴